MATH 5061 Solution to Problem Set 41

1. Let (M, g) be a Riemannian manifold. Fix $p \in M$.
(a) Suppose the exponential map $\exp _{p}$ is defined on the whole tangent space $T_{p} M$. Prove that for any $q \in M$, there exists a geodesic γ joining p to q such that $L(\gamma)$ realized the Riemannian distance $\rho(p, q)$ between p and q. Use this to show that (M, ρ) is complete as a metric space.
(b) Prove the converse of (a), i.e. suppose (M, ρ) is a complete metric space, show that $\exp _{p}$ is well-defined on $T_{p} M$.

Solution:

(a). Let $B_{\delta}(p)$ be a small ball centered at p such that for any $s_{1}, s_{2} \in \overline{B_{\delta}(p)}$, there is a unique geodesic γ jointing s_{1}, s_{2} such that $\rho\left(s_{1}, s_{2}\right)=$ Length of γ. We call this ball as the totally normal ball at p. Let $S_{\delta}(p)$ be the boundary of $B_{\delta}(p)$. Note that $S_{\delta}(p)$ is a compact set, we can find some $s \in S_{\delta}(p)$ such that $\rho(s, q)$ attains a minimum on $S_{\delta}(p)$. So we can find a minimizing geodesic $\gamma(t)$ with $\gamma(0)=p, \gamma(\delta)=s$ and $\left\|\gamma^{\prime}(0)\right\|=1$. By the definition of exponential map, we have $\exp _{p}(\delta v)=s$ where $v=\gamma^{\prime}(0) \in T_{p} M$. Let $l=\rho(p, q)$, we are going to show $\exp _{p}(l v)=q$. Since $\exp _{p}(t v)$ defined for all $t \in \mathbb{R}$, we actually can extend the definition of $\gamma(t)$ for $t \in \mathbb{R}$ by $\gamma(t)=\exp _{p}(t v)$.

We consider the following equation.

$$
\begin{equation*}
\rho(\gamma(t), q)=l-t \tag{1}
\end{equation*}
$$

Let $A=\{t \in(0, l]:(? ?)$ holds for $t\}$. Clearly $A \neq \emptyset$ since $\delta \in A$ (Triangle inequality $\Longrightarrow \rho(s, q) \geq l-\delta$. If $\rho(s, q)=l_{0}>l-\delta$, then any piecewise smooth curve jointing p, q will $\geq l_{0}+\delta$ since they will pass through $S_{\delta}(p)$.)

Note that A is closed in $(0, l]$ by the continuous of distance. So let's show if $t_{0} \in A$ and $t_{0} \neq l$, then we can find $\delta^{\prime}>0$ such that $t_{0}+\delta^{\prime} \in A$. Still we choose a totally normal ball $B_{\delta^{\prime}}\left(\gamma\left(t_{0}\right)\right)$ such that $p, q \notin B_{\delta^{\prime}}\left(\gamma\left(t_{0}\right)\right)$. So we know $\delta^{\prime} \leq \rho\left(\gamma\left(t_{0}\right), q\right)=l-t_{0} \Longrightarrow t_{0}+\delta^{\prime} \leq l$. Again, we can find some $s^{\prime} \in S_{\delta^{\prime}}\left(\gamma\left(t_{0}\right)\right)$ such that $\rho(s, q)$ attains a minimum on $S_{\delta^{\prime}}\left(\gamma\left(t_{0}\right)\right)$. We claim $s^{\prime}=\gamma\left(t_{0}+\delta^{\prime}\right)$. If not, we note $\rho\left(s^{\prime}, \gamma\left(t_{0}-\delta^{\prime}\right)\right)<\rho\left(s^{\prime}, \gamma\left(t_{0}\right)\right)+\rho\left(\gamma\left(t_{0}\right), \gamma\left(t_{0}-\delta^{\prime}\right)\right)=2 \delta^{\prime}$ by the definition of totally normal ball. Hence $\rho\left(s^{\prime}, p\right)<t_{0}+\delta^{\prime}$. Again by triangle inequality, $\rho\left(q, s^{\prime}\right) \geq l-\rho\left(x^{\prime}, p\right)>l-t_{0}-\delta^{\prime}$. Since any curves jointing $\gamma\left(t_{0}\right), q$ will pass through $S_{\delta^{\prime}}\left(\gamma\left(t_{0}\right)\right)$, we actually know $\rho\left(q, \gamma\left(t_{0}\right)\right) \geq \rho\left(x^{\prime}, q\right)+\delta^{\prime}>l-t_{0}$, a contradiction with $t_{0} \in A$. So we should have $x^{\prime}=\gamma\left(t_{0}+\delta^{\prime}\right)$. Still by triangle inequality $\rho\left(\gamma\left(t_{0}+\delta^{\prime}\right), p\right) \geq l-t_{0}-\delta^{\prime}$ but $\rho\left(\gamma\left(t_{0}+\delta^{\prime}\right), p\right)>l-t_{0}-\delta^{\prime}$ cannot hold by the same reason. Hence $\rho\left(\gamma\left(t_{0}+\delta^{\prime}\right), q\right)=l-t_{0}-\delta^{\prime} \Longrightarrow t_{0}+\delta^{\prime} \in A$.

The above steps show sup $A \in A$ by the closeness and moreover $\sup A=l$. Hence $l \in A$ and $\gamma(l)=q$. The γ is the geodesic jointing p, q realized the distance $\rho(p, q)$.

To prove (M, ρ) is complete, note for any Cauchy sequence $\left(p_{i}\right)$, we know $\rho\left(p_{i}, p\right)$ is bounded by Triangle inequality. Suppose $\rho\left(p_{i}, p\right)<M$ for all i, we know p_{i} in the image of $\overline{B_{M}(p)}$ under the map $\exp _{p}$. Note $\overline{B_{M}(p)}$ is compact, so does the set $\exp _{p}\left(\overline{B_{M}(p)}\right)$. Hence we can find a convergent subsequence of $\left(p_{i}\right)$ and indeed the whole sequence will have the same limit since it is Cauchy.

[^0](b). Let's suppose $\exp _{p}$ is not defined on the whole $T_{p} M$. That means there is a geodesic $\gamma(t)$ with $\gamma(0)=p$ is not defined for some t. WLOG, we assume $\left\|\gamma^{\prime}(0)\right\|=1$. By the existence of geodesic, we know there is a largest open interval $\left(-s_{0}, s_{1}\right)$ such that $\gamma(t)$ is well-defined. Let $t_{i} \in\left(-s_{0}, s_{1}\right)$ such that $t_{i} \rightarrow s_{1}$. Note $\rho\left(\gamma\left(t_{i}\right), \gamma\left(t_{j}\right)\right) \leq\left|t_{i}-t_{j}\right|, \gamma\left(t_{i}\right)$ is Cauchy and we can find $q \in M$ such that $\gamma\left(t_{i}\right) \rightarrow q$.

Now let $B_{\delta}(q)$ be a totally normal ball at q. We can find N large such that $p_{i} \in B_{\frac{\delta}{2}}(q)$ and $\left|t_{i}-s_{1}\right|<\frac{\delta}{2}$ for all $i>N$. Note that any two points in $B_{\delta}(p)$ can be joined by a minimizing geodesic, we know the exponential map $\exp _{p_{i}}$ defined for all $\|v\| \leq \frac{\delta}{2}$. Let's consider two points p_{i}, p_{j} with $N<i<j$ and they're joined by a minimizing geodesic $\gamma(t), t \in\left[t_{i}, t_{j}\right]$. But note $\exp _{t_{j}}\left(t \gamma^{\prime}\left(t_{j}\right)\right)$ exists for $t \in\left[-\frac{\delta}{2}, \frac{\delta}{2}\right]$, we know $\gamma(t)$ is well-defined when $t \in\left[t_{j}, t_{j}+\frac{\delta 2}{2}\right]$. Note $t_{j}+\frac{\delta}{2}>s_{1}$, so it contradicts with the choice of γ. Hence $\exp _{p}$ is defined on the whole $T_{p} M$.
2. Prove that every Jacobi field V along a geodesic γ in (M, g) arises from the variation vector field of a 1 -parameter family of geodesics.

Solution:

Suppose $\gamma(t)$ defined on $[0, T]$ with $\left\|\gamma^{\prime}(0)\right\|=1$. Let $\tilde{\gamma}(s):(-\varepsilon, \varepsilon) \rightarrow M$ be the geodesic starting from $\gamma(0)$ with initial velocity $V(0)$. So we consider the variation of γ defined by

$$
f(t, s)=\exp _{\tilde{\gamma}(s)}(t W(s))
$$

where $W(s)$ be the vector field along $\tilde{\gamma}$ with $W(0)=\gamma^{\prime}(0)$ and $\frac{D W}{d s}(0)=\frac{D V}{d t}(0)$.
Clearly $f(t, 0)=\exp _{\gamma(0)}\left(t \gamma^{\prime}(0)\right)=\gamma(t)$, so f is indeed a variation of γ.
Note that the variation of geodesic will give the Jacobi field. That is, if we define $\tilde{V}(t)=\frac{\partial f}{\partial s}(t, 0)$, the vector field along γ, then note $\frac{D}{d t} \frac{\partial f}{\partial t}=0$, we have

$$
\begin{aligned}
0 & =\frac{D}{d s} \frac{D}{d t} \frac{\partial f}{\partial t}=\frac{D}{d t} \frac{D}{d s} \frac{\partial f}{\partial t}-R\left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}\right) \frac{\partial f}{\partial t} \\
& =\frac{D}{d t} \frac{D}{d t} \frac{\partial f}{\partial s}+R\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right) \frac{\partial f}{\partial t}=\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \tilde{V}+R\left(\gamma^{\prime}, \tilde{V}\right) \gamma^{\prime}
\end{aligned}
$$

which shows \tilde{V} is indeed a Jacobi field.
Note that $V(0)=\tilde{V}(0)=\frac{\partial f}{\partial s}(0,0)$ and

$$
\nabla_{\gamma^{\prime}(0)} \tilde{V}(0)=\frac{D}{d s} \frac{\partial f}{\partial t}(0,0)=\frac{D}{d s} W(0)=\frac{D V}{d t}(0)=\nabla_{\gamma^{\prime}(0)} V(0)
$$

Hence $V=\tilde{V}$ along γ by the uniqueness of the ODE solutions.
So V arises as the variation of the geodesic.
3. A vector field $X \in \Gamma(T M)$ is said to be a Killing vector field if $\mathcal{L}_{X} g=0$.
(a) Suppose M is compact. Show that X is a Killing vector field if and only if the flow $\left\{\varphi_{t}\right\}$ of diffeomorphisms of M generated by X consists of isometries of (M, g).
(b) Prove that any Killing vector field X restricts to a Jacobi field on every geodesic in M.
(c) Suppose M is connected. Show that a Killing vector field X on M which vanishes at some $p \in M$ and $\nabla_{Y} X(p)=0$ for all $Y(p) \in T_{p} M$ must vanish everywhere on M.

Solution:

(a).
$" \Longrightarrow "$ Suppose X is a Killing vector field. Then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \varphi_{t}^{*} g=\mathcal{L}_{X} g=0
$$

where φ_{t} generated by X by the definition of Lie derivative of tensor. Hence

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=t_{0}} \varphi_{t}^{*} g=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \varphi_{t_{0}}^{*} \circ \varphi_{t}^{*} g=\varphi_{t_{0}}^{*}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} \varphi_{t}^{*} g\right)=\varphi_{t_{0}}^{*}\left(\mathcal{L}_{X} g\right)=0
$$

by the properties of flow. So $\varphi_{t}^{*} g=g$.
$" \Longleftarrow "$ Suppose $\varphi_{t}^{*} g=g$ for all t, then

$$
\mathcal{L}_{X} g=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \varphi_{t}^{*} g=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} g=0
$$

(b). Let φ_{t} be the flow generated by X. So φ_{t} will be the isometries of M. Hence for any geodesic $\gamma(s)$, the variation of γ defined by $\gamma_{t}(s)=\varphi_{t}(\gamma(s))$ is geodesic for every $t \in \mathbb{R}$. Hence the vector field $V=\frac{\partial \gamma_{t}}{\partial t}=\frac{\partial}{\partial t} \varphi_{t}=X$ along $\gamma(s)$ is a Jacobi field.
(c). Let $A=\left\{p \in M: X, \nabla_{Y} X\right.$ vanished at p for all $\left.Y(p) \in T_{p} M\right\}$. Clearly $A \neq \emptyset$ is closed. We show A is open, too. For any $p \in M$, we choose a small ball $B_{\delta}(p)$ that for every point in q, there is a unique minimizing geodesic $\gamma_{p, q}$ in $B_{\delta}(p)$ jointing p, q. Note that X is a Jacobi field along $\gamma_{p, q}$ that $X, \nabla_{\gamma_{p, q}^{\prime}(0)}$ vanish at p. But by the uniqueness of Jacobi field when given $V(0), \nabla_{\gamma^{\prime}(0)} V(0)$, we know X should be the zero vector field. Hence X will be zero in the whole ball $B_{\delta}(p)$. So $B_{\delta}(p) \subset A$.

Since M is connect and A is open and closed at the same time, we know $A=M$.
4. Show that Synge theorem does not hold in odd dimensions.

Solution:

Consider the projective space $\mathbb{R P}^{n}$ when n is odd. It is a quotient of \mathbb{S}^{n} under antipodal map φ. Since φ is orientation preserving when n is odd, we know $\mathbb{R} \mathbb{P}^{n}$ is orientable and moreover $\mathbb{R P}^{n}$ has positive sectional curvature by the properties of covering map. Hence Synge theorem does not hold in odd dimensions.

[^0]: ${ }^{1}$ Last revised on April 8, 2024

