
MATH 5061 Solution to Problem Set 41

1. Let (M, g) be a Riemannian manifold. Fix p ∈ M .

(a) Suppose the exponential map expp is defined on the whole tangent space TpM . Prove that for any
q ∈ M , there exists a geodesic γ joining p to q such that L(γ) realized the Riemannian distance ρ(p, q)
between p and q. Use this to show that (M,ρ) is complete as a metric space.

(b) Prove the converse of (a), i.e. suppose (M,ρ) is a complete metric space, show that expp is well-defined
on TpM .

Solution:
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Problem 1
(a). Let B�(p) be a small ball centered at p such that for any s1, s2 2 B�(p),
there is a unique geodesic � jointing s1, s2 such that ⇢(s1, s2) = Length of �.
We call this ball as the totally normal ball at p. Let S�(p) be the boundary of
B�(p). Note that S�(p) is a compact set, we can find some s 2 S�(p) such that
⇢(s, q) attains a minimum on S�(p). So we can find a minimizing geodesic �(t)
with �(0) = p, �(�) = s and k�0(0)k = 1. By the definition of exponential map,
we have expp(�v) = s where v = �0(0) 2 TpM . Let l = ⇢(p, q), we are going to
show expp(lv) = q. Since expp(tv) defined for all t 2 R, we actually can extend
the definition of �(t) for t 2 R by �(t) = expp(tv).

We consider the following equation.

⇢(�(t), q) = l � t (1)

Let A = {t 2 (0, l] : (??) holds for t}. Clearly A 6= ; since � 2 A (Triangle
inequality =) ⇢(s, q) � l��. If ⇢(s, q) = l0 > l��, then any piecewise smooth
curve jointing p, q will � l0 + � since they will pass through S�(p).)

Note that A is closed in (0, l] by the continuous of distance. So let’s show
if t0 2 A and t0 6= l, then we can find �0 > 0 such that t0 + �0 2 A. Still we
choose a totally normal ball B�0(�(t0)) such that p, q /2 B�0(�(t0)). So we know
�0  ⇢(�(t0), q) = l�t0 =) t0 +�0  l. Again, we can find some s0 2 S�0(�(t0))
such that ⇢(s, q) attains a minimum on S�0(�(t0)). We claim s0 = �(t0 + �0).
If not, we note ⇢(s0, �(t0 � �0)) < ⇢(s0, �(t0)) + ⇢(�(t0), �(t0 � �0)) = 2�0 by the
definition of totally normal ball. Hence ⇢(s0, p) < t0 + �0. Again by triangle
inequality, ⇢(q, s0) � l � ⇢(x0, p) > l � t0 � �0. Since any curves jointing �(t0), q
will pass through S�0(�(t0)), we actually know ⇢(q, �(t0)) � ⇢(x0, q)+�0 > l� t0,
a contradiction with t0 2 A. So we should have x0 = �(t0 + �0). Still by triangle
inequality ⇢(�(t0 + �0), p) � l � t0 � �0 but ⇢(�(t0 + �0), p) > l � t0 � �0 cannot
hold by the same reason. Hence ⇢(�(t0 + �0), q) = l � t0 � �0 =) t0 + �0 2 A.

The above steps show sup A 2 A by the closeness and moreover sup A = l.
Hence l 2 A and �(l) = q. The � is the geodesic jointing p, q realized the
distance ⇢(p, q).

To prove (M,⇢) is complete, note for any Cauchy sequence (pi), we know
⇢(pi, p) is bounded by Triangle inequality. Suppose ⇢(pi, p) < M for all i, we
know pi in the image of BM (p) under the map expp. Note BM (p) is compact,
so does the set expp(BM (p)). Hence we can find a convergent subsequence of
(pi) and indeed the whole sequence will have the same limit since it is Cauchy.

1

1Last revised on April 8, 2024

1



(b). Let’s suppose expp is not defined on the whole TpM . That means there
is a geodesic �(t) with �(0) = p is not defined for some t. WLOG, we assume
k�0(0)k = 1. By the existence of geodesic, we know there is a largest open
interval (�s0, s1) such that �(t) is well-defined. Let ti 2 (�s0, s1) such that
ti ! s1. Note ⇢(�(ti), �(tj))  |ti � tj |, �(ti) is Cauchy and we can find q 2 M
such that �(ti) ! q.

Now let B�(q) be a totally normal ball at q. We can find N large such that
pi 2 B �

2
(q) and |ti � s1| < �

2 for all i > N . Note that any two points in B�(p)

can be joined by a minimizing geodesic, we know the exponential map exppi

defined for all kvk  �
2 . Let’s consider two points pi, pj with N < i < j and

they’re joined by a minimizing geodesic �(t), t 2 [ti, tj ]. But note exptj
(t�0(tj))

exists for t 2 [� �
2 , �

2 ], we know �(t) is well-defined when t 2 [tj , tj + �2
2 ]. Note

tj + �
2 > s1, so it contradicts with the choice of �. Hence expp is defined on the

whole TpM .

Problem 2
Suppose �(t) defined on [0, T ] with k�0(0)k = 1. Let �̃(s) : (�", ") ! M be
the geodesic starting from �(0) with initial velocity V (0). So we consider the
variation of � defined by

f(t, s) = exp�̃(s)(tW (s))

where W (s) be the vector field along �̃ with W (0) = �0(0) and DW
ds (0) = DV

dt (0).
Clearly f(t, 0) = exp�(0)(t�

0(0)) = �(t), so f is indeed a variation of �.
Note that the variation of geodesic will give the Jacobi field. That is, if we

define Ṽ (t) = @f
@s (t, 0), the vector field along �, then note D

dt
@f
@t = 0, we have

0 =
D

ds

D

dt

@f

@t
=

D

dt

D

ds

@f

@t
� R(

@f

@s
,
@f

@t
)
@f

@t

=
D

dt

D

dt

@f

@s
+ R(

@f

@t
,
@f

@s
)
@f

@t
= r�0r�0 Ṽ + R(�0, Ṽ )�0

which shows Ṽ is indeed a Jacobi field.
Note that V (0) = Ṽ (0) = @f

@s (0, 0) and

r�0(0)Ṽ (0) =
D

ds

@f

@t
(0, 0) =

D

ds
W (0) =

DV

dt
(0) = r�0(0)V (0)

Hence V = Ṽ along � by the uniqueness of the ODE solutions.
So V arises as the variation of the geodesic.

Problem 3
(a).

" =) " Suppose X is a Killing vector field. Then

d
dt

|t=0'
⇤
t g = LXg = 0

where 't generated by X by the definition of Lie derivative of tensor. Hence

d
dt

|t=t0'
⇤
t g =

d
dt

|t=0'
⇤
t0 � '⇤

t g = '⇤
t0

✓
d
dt

|t=0'
⇤
t g

◆
= '⇤

t0(LXg) = 0
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2. Prove that every Jacobi field V along a geodesic γ in (M, g) arises from the variation vector field of a
1-parameter family of geodesics.

Solution:
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3. A vector field X ∈ Γ(TM) is said to be a Killing vector field if LXg = 0.

(a) Suppose M is compact. Show that X is a Killing vector field if and only if the flow {φt} of diffeo-
morphisms of M generated by X consists of isometries of (M, g).

(b) Prove that any Killing vector field X restricts to a Jacobi field on every geodesic in M .

(c) Suppose M is connected. Show that a Killing vector field X on M which vanishes at some p ∈ M
and ∇Y X(p) = 0 for all Y (p) ∈ TpM must vanish everywhere on M .

Solution:
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by the properties of flow. So '⇤

t g = g.
" (= " Suppose '⇤

t g = g for all t, then

LXg =
d
dt

|t=0'
⇤
t g =

d
dt

|t=0g = 0

(b). Let 't be the flow generated by X. So 't will be the isometries of M .
Hence for any geodesic �(s), the variation of � defined by �t(s) = 't(�(s)) is
geodesic for every t 2 R. Hence the vector field V = @�t

@t = @
@t't = X along

�(s) is a Jacobi field.
(c). Let A = {p 2 M : X,rY X vanished at p for all Y (p) 2 TpM}. Clearly
A 6= ; is closed. We show A is open, too. For any p 2 M , we choose a small
ball B�(p) that for every point in q, there is a unique minimizing geodesic �p,q

in B�(p) jointing p, q. Note that X is a Jacobi field along �p,q that X,r�0
p,q(0)

vanish at p. But by the uniqueness of Jacobi field when given V (0),r�0(0)V (0),
we know X should be the zero vector field. Hence X will be zero in the whole
ball B�(p). So B�(p) ⇢ A.

Since M is connect and A is open and closed at the same time, we know
A = M .

Problem 4
Consider the projective space RPn when n is odd. It is a quotient of Sn under
antipodal map '. Since ' is orientation preserving when n is odd, we know RPn

is orientable and moreover RPn has positive sectional curvature by the properties
of covering map. Hence Synge theorem does not hold in odd dimensions.

3

4. Show that Synge theorem does not hold in odd dimensions.
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