MATH 5061 Solution to Problem Set 4¹

- 1. Let (M, g) be a Riemannian manifold. Fix $p \in M$.
 - (a) Suppose the exponential map \exp_p is defined on the whole tangent space T_pM . Prove that for any $q \in M$, there exists a geodesic γ joining p to q such that $L(\gamma)$ realized the Riemannian distance $\rho(p,q)$ between p and q. Use this to show that (M, ρ) is complete as a metric space.
 - (b) Prove the converse of (a), i.e. suppose (M, ρ) is a complete metric space, show that \exp_p is well-defined on $T_p M$.

Solution:

(a). Let $B_{\delta}(p)$ be a small ball centered at p such that for any $s_1, s_2 \in \overline{B_{\delta}(p)}$, there is a unique geodesic γ jointing s_1, s_2 such that $\rho(s_1, s_2) =$ Length of γ . We call this ball as the totally normal ball at p. Let $S_{\delta}(p)$ be the boundary of $B_{\delta}(p)$. Note that $S_{\delta}(p)$ is a compact set, we can find some $s \in S_{\delta}(p)$ such that $\rho(s,q)$ attains a minimum on $S_{\delta}(p)$. So we can find a minimizing geodesic $\gamma(t)$ with $\gamma(0) = p, \gamma(\delta) = s$ and $\|\gamma'(0)\| = 1$. By the definition of exponential map, we have $\exp_p(\delta v) = s$ where $v = \gamma'(0) \in T_p M$. Let $l = \rho(p,q)$, we are going to show $\exp_p(lv) = q$. Since $\exp_p(tv)$ defined for all $t \in \mathbb{R}$, we actually can extend the definition of $\gamma(t)$ for $t \in \mathbb{R}$ by $\gamma(t) = \exp_p(tv)$.

We consider the following equation.

$$\rho(\gamma(t), q) = l - t \tag{1}$$

Let $A = \{t \in (0, l] : (\ref{eq:starteq}) \text{ holds for } t\}$. Clearly $A \neq \emptyset$ since $\delta \in A$ (Triangle inequality $\implies \rho(s, q) \ge l - \delta$. If $\rho(s, q) = l_0 > l - \delta$, then any piecewise smooth curve jointing p, q will $\ge l_0 + \delta$ since they will pass through $S_{\delta}(p)$.)

Note that A is closed in (0, l] by the continuous of distance. So let's show if $t_0 \in A$ and $t_0 \neq l$, then we can find $\delta' > 0$ such that $t_0 + \delta' \in A$. Still we choose a totally normal ball $B_{\delta'}(\gamma(t_0))$ such that $p, q \notin B_{\delta'}(\gamma(t_0))$. So we know $\delta' \leq \rho(\gamma(t_0), q) = l - t_0 \implies t_0 + \delta' \leq l$. Again, we can find some $s' \in S_{\delta'}(\gamma(t_0))$ such that $\rho(s, q)$ attains a minimum on $S_{\delta'}(\gamma(t_0))$. We claim $s' = \gamma(t_0 + \delta')$. If not, we note $\rho(s', \gamma(t_0 - \delta')) < \rho(s', \gamma(t_0)) + \rho(\gamma(t_0), \gamma(t_0 - \delta')) = 2\delta'$ by the definition of totally normal ball. Hence $\rho(s', p) < t_0 + \delta'$. Again by triangle inequality, $\rho(q, s') \geq l - \rho(x', p) > l - t_0 - \delta'$. Since any curves jointing $\gamma(t_0), q$ will pass through $S_{\delta'}(\gamma(t_0))$, we actually know $\rho(q, \gamma(t_0)) \geq \rho(x', q) + \delta' > l - t_0$, a contradiction with $t_0 \in A$. So we should have $x' = \gamma(t_0 + \delta')$. Still by triangle inequality $\rho(\gamma(t_0 + \delta'), p) \geq l - t_0 - \delta'$ but $\rho(\gamma(t_0 + \delta'), p) > l - t_0 - \delta'$ cannot hold by the same reason. Hence $\rho(\gamma(t_0 + \delta'), q) = l - t_0 - \delta' \implies t_0 + \delta' \in A$.

The above steps show $\sup A \in A$ by the closeness and moreover $\sup A = l$. Hence $l \in A$ and $\gamma(l) = q$. The γ is the geodesic jointing p, q realized the distance $\rho(p, q)$.

To prove (M, ρ) is complete, note for any Cauchy sequence (p_i) , we know $\rho(p_i, p)$ is bounded by Triangle inequality. Suppose $\rho(p_i, p) < M$ for all *i*, we know p_i in the image of $\overline{B_M(p)}$ under the map \exp_p . Note $\overline{B_M(p)}$ is compact, so does the set $\exp_p(\overline{B_M(p)})$. Hence we can find a convergent subsequence of (p_i) and indeed the whole sequence will have the same limit since it is Cauchy.

¹Last revised on April 8, 2024

(b). Let's suppose \exp_p is not defined on the whole T_pM . That means there is a geodesic $\gamma(t)$ with $\gamma(0) = p$ is not defined for some t. WLOG, we assume $\|\gamma'(0)\| = 1$. By the existence of geodesic, we know there is a largest open interval $(-s_0, s_1)$ such that $\gamma(t)$ is well-defined. Let $t_i \in (-s_0, s_1)$ such that $t_i \to s_1$. Note $\rho(\gamma(t_i), \gamma(t_j)) \leq |t_i - t_j|, \gamma(t_i)$ is Cauchy and we can find $q \in M$ such that $\gamma(t_i) \to q$.

Now let $B_{\delta}(q)$ be a totally normal ball at q. We can find N large such that $p_i \in B_{\frac{\delta}{2}}(q)$ and $|t_i - s_1| < \frac{\delta}{2}$ for all i > N. Note that any two points in $B_{\delta}(p)$ can be joined by a minimizing geodesic, we know the exponential map \exp_{p_i} defined for all $||v|| \leq \frac{\delta}{2}$. Let's consider two points p_i, p_j with N < i < j and they're joined by a minimizing geodesic $\gamma(t), t \in [t_i, t_j]$. But note $\exp_{t_j}(t\gamma'(t_j))$ exists for $t \in [-\frac{\delta}{2}, \frac{\delta}{2}]$, we know $\gamma(t)$ is well-defined when $t \in [t_j, t_j + \frac{\delta 2}{2}]$. Note $t_j + \frac{\delta}{2} > s_1$, so it contradicts with the choice of γ . Hence \exp_p is defined on the whole T_pM .

2. Prove that every Jacobi field V along a geodesic γ in (M, g) arises from the variation vector field of a 1-parameter family of geodesics.

Solution:

Suppose $\gamma(t)$ defined on [0,T] with $\|\gamma'(0)\| = 1$. Let $\tilde{\gamma}(s) : (-\varepsilon,\varepsilon) \to M$ be the geodesic starting from $\gamma(0)$ with initial velocity V(0). So we consider the variation of γ defined by

$$f(t,s) = \exp_{\tilde{\gamma}(s)}(tW(s))$$

where W(s) be the vector field along $\tilde{\gamma}$ with $W(0) = \gamma'(0)$ and $\frac{DW}{ds}(0) = \frac{DV}{dt}(0)$. Clearly $f(t,0) = \exp_{\gamma(0)}(t\gamma'(0)) = \gamma(t)$, so f is indeed a variation of γ .

Note that the variation of geodesic will give the Jacobi field. That is, if we define $\tilde{V}(t) = \frac{\partial f}{\partial s}(t,0)$, the vector field along γ , then note $\frac{D}{dt}\frac{\partial f}{\partial t} = 0$, we have

$$0 = \frac{D}{ds}\frac{D}{dt}\frac{\partial f}{\partial t} = \frac{D}{dt}\frac{D}{ds}\frac{\partial f}{\partial t} - R(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t})\frac{\partial f}{\partial t}$$
$$= \frac{D}{dt}\frac{D}{dt}\frac{\partial f}{\partial s} + R(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s})\frac{\partial f}{\partial t} = \nabla_{\gamma'}\nabla_{\gamma'}\tilde{V} + R(\gamma', \tilde{V})\gamma'$$

which shows \tilde{V} is indeed a Jacobi field.

Note that $V(0) = \tilde{V}(0) = \frac{\partial f}{\partial s}(0,0)$ and

$$\nabla_{\gamma'(0)}\tilde{V}(0) = \frac{D}{ds}\frac{\partial f}{\partial t}(0,0) = \frac{D}{ds}W(0) = \frac{DV}{dt}(0) = \nabla_{\gamma'(0)}V(0)$$

Hence $V = \tilde{V}$ along γ by the uniqueness of the ODE solutions. So V arises as the variation of the geodesic.

- 3. A vector field $X \in \Gamma(TM)$ is said to be a Killing vector field if $\mathcal{L}_X g = 0$.
 - (a) Suppose M is compact. Show that X is a Killing vector field if and only if the flow $\{\varphi_t\}$ of diffeomorphisms of M generated by X consists of isometries of (M, g).
 - (b) Prove that any Killing vector field X restricts to a Jacobi field on every geodesic in M.
 - (c) Suppose M is connected. Show that a Killing vector field X on M which vanishes at some $p \in M$ and $\nabla_Y X(p) = 0$ for all $Y(p) \in T_p M$ must vanish everywhere on M.

Solution:

(a). " \implies " Suppose X is a Killing vector field. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}\varphi_t^*g = \mathcal{L}_Xg = 0$$

where φ_t generated by X by the definition of Lie derivative of tensor. Hence

$$\frac{\mathrm{d}}{\mathrm{d}t}|_{t=t_0}\varphi_t^*g = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}\varphi_{t_0}^* \circ \varphi_t^*g = \varphi_{t_0}^*\left(\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}\varphi_t^*g\right) = \varphi_{t_0}^*(\mathcal{L}_Xg) = 0$$

by the properties of flow. So $\varphi_t^* g = g$.

" \Leftarrow " Suppose $\varphi_t^* g = g$ for all t, then

$$\mathcal{L}_X g = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}\varphi_t^* g = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}g = 0$$

(b). Let φ_t be the flow generated by X. So φ_t will be the isometries of M. Hence for any geodesic $\gamma(s)$, the variation of γ defined by $\gamma_t(s) = \varphi_t(\gamma(s))$ is geodesic for every $t \in \mathbb{R}$. Hence the vector field $V = \frac{\partial \gamma_t}{\partial t} = \frac{\partial}{\partial t}\varphi_t = X$ along $\gamma(s)$ is a Jacobi field.

(c). Let $A = \{p \in M : X, \nabla_Y X \text{ vanished at } p \text{ for all } Y(p) \in T_p M\}$. Clearly $A \neq \emptyset$ is closed. We show A is open, too. For any $p \in M$, we choose a small ball $B_{\delta}(p)$ that for every point in q, there is a unique minimizing geodesic $\gamma_{p,q}$ in $B_{\delta}(p)$ jointing p, q. Note that X is a Jacobi field along $\gamma_{p,q}$ that $X, \nabla_{\gamma'_{p,q}(0)}$ vanish at p. But by the uniqueness of Jacobi field when given $V(0), \nabla_{\gamma'(0)}V(0)$, we know X should be the zero vector field. Hence X will be zero in the whole ball $B_{\delta}(p)$. So $B_{\delta}(p) \subset A$.

Since M is connect and A is open and closed at the same time, we know A = M.

4. Show that Synge theorem does not hold in odd dimensions.

Solution:

Consider the projective space \mathbb{RP}^n when n is odd. It is a quotient of \mathbb{S}^n under antipodal map φ . Since φ is orientation preserving when n is odd, we know \mathbb{RP}^n is orientable and moreover \mathbb{RP}^n has positive sectional curvature by the properties of covering map. Hence Synge theorem does not hold in odd dimensions.